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1 Introduction

The history of modern cryptography is intimately linked with the rise of the com-
puter in the 1950s and 1960s. As the capabilities of computers improved, their
somewhat limited utility expanded to a diverse set of new applications. One par-
ticularly valuable application was archiving private and confidential data, where
computers quickly became ubiquitous. As their popularity in this area increased,
there was a clear realization among computer programmers, academics and policy-
makers that the nation was lacking the capability to secure confidential information
through encryption. This concern led Congress to enact a law in 1965 known as the
Brooks Act mandating the development of new standards and encryption proto-
cols as well as requiring the Secretary of Commerce to promulgate new encryption
standards for federal computers.[1] This law eventually resulted in the design of
the Data Encryption Standard (DES).

In May 1973, the National Bureau of Standards (NBS) began the public pro-
cess for developing the DES standard. As an official protocol of the U.S. gov-
ernment, DES had to be published for public comment in the Federal Register.
These comments touched off years of debates surrounding the protocol, including
questions over the length of the DES encryption key, the involvement of the in-
telligence community in the protocol’s development, and the protocol’s resistance
to attacks. Despite several negative comments, the NBS published the protocol
in January 1977 as an official encryption standard. It is the first cryptographic
protocol endorsed by the government.[8]

This paper will begin by laying out the design of the DES protocol and will
then consider possible attacks to the standard. Finally, the current status of the
protocol will be presented.
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2 DES Protocol

This section is based off of the current National Institute of Standards and Tech-
nology (the successor of the NBS) standard specification available online.[2]

Before discussing the implementation of DES, some basic design notes of the
protocol need to be laid out. DES belongs to a class of cryptographic protocols
known as block ciphers, in which the protocol encrypts a defined size block of data
into an encrypted block of the same size. The DES protocol uses a block size of 64
bits. If the data to be encrypted is not exactly this size, it needs to be segmented
and/or padded to create exactly 64 bit blocks. To encrypt each of these blocks,
DES relies on 64 bit keys, with 56 bits used to encrypt data and eight of the bits
devoted to parity checks (a form of error detection). DES is a symmetric key
algorithm, which means that both the sender and the receiver must use the same
key in order to decode the message. In addition to this key, the protocol requires
the use of several bit selection tables which are defined as part of the standard and
easily locatable online.

2.1 Initial Permutation

First, begin with a single block of 64 bits to be used as the input. Bits are numbered
in DES from left-to-right (little endian in Computer Science). The first step of the
DES protocol is to scramble this block through the “Initial Permutation” function,
which moves each bit to a protocol-defined new location. For example, the first
eight bits of this mapping are {58, 50, 42, 34, 26, 18, 10, 2}, meaning that the
first bit (the leftmost bit) of the scrambled block was originally bit 58 of the input
block. All 64 bits are similarly scrambled based on the complete bit-swapping
table, which can be found in the protocol definition online.

2.2 Key Schedule Generation

This scrambled block will eventually be sent through 16 rounds of a “Fesitel func-
tion,” each of which requires a different 48 bit key. Before continuing the discussion
of encrypting our input though, we need to generate a set of 16 keys that can be
used for this function. These keys are collectively called a key schedule, and they
can be generated using the following algorithm.

First, take the 64 bit key shared between the sender and received and pass it
through the “Permuted Choice 1” algorithm. Like the Initial Permutation, this
matrix scrambles the locations of the bits in a defined manner. However, it also
eliminates every eighth bit, since these are used to ensure parity. Thus, the original
64 bit key has now been reduced to a scrambled 56 bit key. We can divide this
new key into two parts: the first 28 bits form C0 and the last 28 bits form D0.

2



The keys are generated by taking the bits in these two segments and shifting
them to the left a defined number of times. A left shift in this instance is not
like the traditional bit-wise shift operator in typical programming languages, but
rather a wraparound shift. Thus, a shift to the left of one of the 28 bit blocks
would yield a new block with bits numbered 2, 3 ... 28, 1. Another shift would
yield 3, 4 ... 28, 1, 2, and so on. To get the nth key, we iterate through the shift
schedule (which is provided in the protocol) starting with these initial 28 bit blocks
until we have shifted the needed number of times. For instance, C1 is obtained
from C0 by shifting to the left once (D0 follows in the same fashion). Another left
shift on C1 yields C2, and two left shifts (remember, the schedule requires either
a single left shift or two left shifts to get the next key) will yield C3.

Once we get the Cn or Dn we desire, there is one final thing we need to do in
order to turn it into a key. To get the nth key, we need to combine Cn or Dn together
into a 56 bit block and then send this combined block through Permutation Choice
2, another scramble matrix. PC-2 takes this 56 bit block and reduces it to 48 bits
while also scrambling the bits. Once we have calculate all sixteen keys, we have
created our key schedule and can begin encrypting our block.

2.3 Feistel Function

Now that we have our key schedule, we need to return to the scrambled block
output from the Initial Permutation and begin encrypting it. First, break the
block into two parts, a 32-bit left half and a 32-bit right half, to be called L and
R. To get the encrypted block, we need to calculate the following equation:

L′ = R (1)

R′ = L⊕ f(R,Kn) (2)

In words, the new block’s left half is just the former block’s right half, and
the new block’s right half is the former block’s left half XORed with the Feistel
function (see online for information on the XOR function).

The Feistel function takes a 32 bit block input and a 48 bit key and outputs
a new 32 bit block. To start, the function expands the input block to 48 bits
through another defined matrix, this one called E. We now have two 48 bit blocks:
the output of the E matrix (which we will call T), and the key given to the function
(K). Calculate M as follows:

M = T ⊕K (3)

Now we will subdivide M into eight, 6 bit chunks. Each of these chunks is given
to a unique selection function named S1 through S8, each of which outputs a 4
bit chunk. These S functions are tables with four rows and sixteen columns, and
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each cell holds a number between 0 and 15 —essentially four bits of binary. To
calculate the row, we use the first and last bits of the input together to get a two
bit integer between 0 and 3. To calculate the column, take the middle four bits
of the input to get a number between 0 and 15. Find the correct cell to get the
encrypted four bits, which then becomes the output. This process is conducted
similarly for each of the eight bit chunks from M to get 32 bits of output. This is
the result of the Fesitel function.

The process above is considered one round. DES requires that the output from
the Initial Permutation go through sixteen rounds of the Feistel function. Thus,
the left and right chunks of our encrypted block will move back and forth sixteen
times, with each chunk going through the Fesitel function a total of eight times.

2.4 Final Steps

After sixteen rounds of the Feistel function have been applied, we have what
is called the preoutput of the DES protocol. To get the final 64 bit encrypted
block, we need to send the preoutput through the Inverse Initial Permutation,
defined like the earlier Initial Permutation in the DES protocol. Once the bits have
been scrambled this last time, we have a DES-encoded block, and the protocol is
complete.

2.5 Decryption

The encrypted block output from the DES protocol is then sent to the receiver
who wishes to decrypt it. In order to do so, the receiver will need the key K used
in the encryption process. There is nothing tricky about decryption. Basically,
the process described above for encrypting message is identical to the process for
decrypting the message, just in reverse. Importantly, each key in the key schedule
must be applied in reverse order (therefore, K16 will be used first), and the left
and right chunks of the blocks need to be shifted with new equations:

R = L′ (4)

L = R′ ⊕ f(L′, Kn) (5)

Conduct all sixteen rounds in reverse, and then apply the Initial Permutation
to return to the original cleartext.

3 Possible Attacks

As with all cryptographic protocols, there are a range of possible attacks against
DES with varying abilities to break the protocol. From the moment it was first
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published, DES has been criticized for its small key size, as well as its cryptographic
effectiveness. We will now consider several different attacks and evaluate each.

3.1 Brute Force Method

Since the key used by DES is relatively short compared to modern cryptographic
systems, there is a potential risk of brute force attacks —essentially trying all 256

keys with an intercepted encrypted message and continuing until an understand-
able cleartext is found. However, this method is still out of the processing range of
most computers. Even so, there have been theoretical computer designs that could
be specifically built for the purpose of brute force attacking the DES protocol. By
1997, groups were decrypting DES messages with brute force techniques and in
1998, the Electronic Frontier Foundation — a group dedicated to privacy rights
on the internet — demonstrated that DES could be broken in a matter of days
with custom utilities.[4, 5] It should be noted that the protocol itself is not at fault
here, but rather the relatively short key size compared to newer standards that
range from 128 bit to 512 bit encryption. An increase of a single bit squares the
number of possible keys, and thus the increase in key size increases the difficulty
of breaking the protocol exponentially.

3.2 Differential Cryptanalysis

Another type of attack uses carefully-chosen plaintexts to acquire information
about the key used in a DES-encoded message. This type of analysis is called
Differential Cryptanalysis because it involves inputting slightly different plaintexts
through the DES protocol and then evaluating the ciphertexts that emerge to
backtrack to the original key. The goal is to use knowledge of the S bit transform
matrices to “follow” a bit from the cleartext to the ciphertext and use the output
to create a probability model for possible keys. However, careful design of the S
transforms in the DES protocol ensured that this tactic is practically impossible,
and nearly as hard as a brute force attack. The National Security Agency was
aware of this type of attack before the protocol was originally published, and
worked to design the S bit transforms to be immune.[3]

3.3 Intercepting Keys

Both brute force attacks and differential cryptanalysis have been mostly ineffective
until recently in breaking the DES protocol. However, there are other means
of breaking the protocol then just attempting to determine the key. DES is a
symmetric key protocol, which means that both the sender and the receiver of an
encrypted communication must have the same key. This key has to be sent in the
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clear, or through another encryption protocol. Otherwise, if the key is passed in
the clear, it may be easy to intercept. Several years after DES was approved by
the NBS, Diffie and Hellman designed the public key protocol, which is a more
secure method to protect keys. In modern day communications, one of the evolved
forms of DES is often used in conjunction with public key cryptography to create
an encrypted channel.

4 Current Status of DES

DES was the first published federal cryptographic standard. Since then, the field
of cryptography has expanded dramatically, and dozens of new protocols have been
developed. Starting in the 1990s, there was growing concern in the cryptography
community about the weakness of DES to possible attacks. These concerns, and
the breaking of the protocol by the EFF, led NIST to begin a search for a replace-
ment for the DES protocol. The first protocol was Triple-DES, and the second
was the Advanced Encryption System (AES).

The biggest flaw in the DES protocol is widely considered to be its small key
size, which at 56 bits provides little protection against today’s high-powered com-
puters. A stopgap measure was announced by NIST called Triple-DES that would
reuse the design of DES but would rely on three keys instead of one, significantly
increasing the effectiveness of DES. The basic idea is that a set of three 56 bit
keys will be given to the Triple-DES function, which will process the cleartext in
succession through the original DES protocol by first encrypting the cleartext with
key one, decrypting it with key two and finally encrypting it with key three (thus
there are three layers of encryption since the decryption with key two does not
cancel the encryption with key one). Decryption is simply the process in reverse.
While the key size has increased, Triple-DES remains at risk because the underly-
ing algorithm itself is beginning to show its age. NIST continued to search for a
replacement, finding it in AES.[7]

AES is the direct successor of DES and was approved by the government in
November 2001. NIST solicited proposals for possible encryption algorithms, and
a total of sixteen were submitted. The final protocol uses the Rijndael cipher to
encrypt its data, which is based on an S-box —not related to the S bit transforms
in the Feistel function of DES. The possible key lengths for AES are 128 bits, 192
bits and 256 bits, which are significantly longer than DES and prevents some of the
brute force attacks possible with the older protocol. Despite similar key lengths
to Triple-DES, AES holds several advantages over the older protocol, including a
more sophisticated encryption algorithm and a faster implementation. There have
been several published attacks against AES, although none of them currently break
the protocol. Today, AES is the most common form of encrypted communication
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in the world, and remains the standard for federal government security.[6]
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